Integrated Corridor Management Update

presented to

ITE California

presented by Vassili Alexiadis

Goals of ICM

- Improve travel time
- Increase corridor person throughput
- Improve travel time reliability
- Improve incident management
- Enable intermodal travel decisions

Nationwide ICM Activity - Examples

NCHRP 03-121 - Broadening Integrated Corridor Management Stakeholders

- Equip transportation decision makers with a systematic approach to engaging non-traditional stakeholder groups in ICM planning
- Give transportation decision makers the tools to present a strong case on why to involve non-traditional stakeholder groups
- Help transportation decision makers develop win-win scenarios to engage non-traditional stakeholder groups

Non-Traditional Stakeholders

Freight

- DOT freight committees
- Freight associations
- Trade associations and user groups
- Major carriers
- Major freight rail carriers
- Distribution centers
- Port authorities

Transit

- State DOT transit groups
- Regional MPO transit planning groups
- Transit agencies at the local, intercity, and regional levels
- Rail, bus, ferry, private shuttle, streetcar, paratransit agencies
- Transit advocacy group/citizens committee

Incident Responders

- State and local law enforcement
- Fire and Rescue
- Emergency medical services
- Towing and recovery
- Medical examiner
- HazMat responders
- Border patrol
- Coroner's office

Non-motorized Roadway Users

- State and local bicycle coalitions
- Local and regional advocacy groups
- Bicycle and pedestrian planning groups at local and regional agencies
- Pedestrian advisory groups/committees

ICM Planning Framework

Identify & Diagnose Problem

In this initial stage, transportation decision makers need to first identify the transportation problem that the corridor is experiencing and diagnose the underlying causes of the problem.

Determine Potential Partners

The objectives and scale of the ICM project will help transportation decision makers determine who will be directly or indirectly affected and which stakeholder entities would make good potential partners.

Engage Potential Partners

Craft effective pitches to management and non-traditional stakeholders by articulating the benefits of integration and operational opportunities in the ICM approach.

Establish ICM Objectives & Scale

Once transportation decision makers have determined that the transportation problem is indeed one that is suitable for ICM, they need to set measurable ICM goals and objectives.

Assess Potential Partners' Needs

Understanding the objectives and needs of non-traditional stakeholder groups helps to build compelling arguments for incorporating them into ICM planning.

Designate Performance Metrics & Data Sources

Identifying performance metrics of interest to corridor operators and stakeholder entities is key to initiating conversations for enhanced two-way data and information sharing.

Develop ICM System Concept

Develop an ICM system concept by designing ICM strategies and response plans that incorporate the needs of all stakeholder groups.

Initiate Formal Arrangements

Formalize institutional, organizational, and technical arrangements with stakeholders to ensure the long-term success of the ICM project.

Potential Freight Decision Makers

End-User

Freight vehicle operator

Dispatchers

Fleet managers

Fleet supervisors

Operations-Level

Trucking associates

Port staff

Marine terminal operators

Non-vessel operating common carrier

Beneficial cargo owners

Rail company operators

Dispatchers, fleet managers, supervisors

Program-Level

State or regional transportation commissions

Metropolitan planning organizations

Trucking associations

Port authorities

Freight company executive and management staff

U.S. DOT

Transit Needs

Goals and Objectives	Main ICM Concerns	Potential ICM Strategies
 Reliability System efficiency Safety Affordability Accessibility 	 Making a case for ICM Potential for negative transit impacts ITS investment coordination Potential interoperability issues One-directional information flow Lack of ITS infrastructure Restricted access to roadway assets Right-of-way constraints 	 Customer tripplanning and wayfinding Real-time arrival and status information Transit access and intermodal transfers Incident/operations management Transit signal priority Integrated fare payment

Benefits of ICM Involvement: Incident Responders and Corridor Operators

Incident Responders

Reduce incident response times

Increase the safety of on-scene incident responders

Platform for establishing formal TIM programs

Enhanced data and information sharing

Increase monitoring capabilities and assets

Forum for collaboration

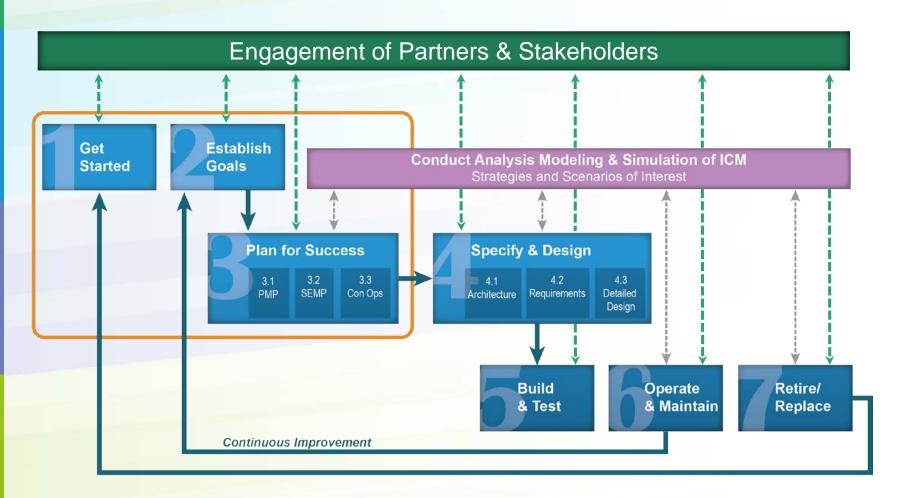
Improved corridor performance

Corridor Operators

Buy-in from influential stakeholder group

User's perspective of the corridor

More effective ICM strategies



Overall Lessons Learned

- Operational and Institutional integration are as important as Technological integration
 - Engage stakeholders early and often 8-step graph
- Analyze expected impacts early and often in parallel with design and operation
 - » Analysis chart
- Corridors are rarely isolated Integrated Active System Management is the new trend

ICM Implementation Process

10 Attributes of a Successful ICM Site

- 10. Significant Congestion and Unreliable Travel Times
- 9. Infrastructural Availabilities
- 8. Multimodal Capabilities
- 7. Centralized Data Hub
- 6. Successful Procurement Practices

- Readily Available
 Alternative Transit
 Options
- 4. Optimization of Existing Transportation Systems
- 3. Public Engagement
- Open-mindedness for Change
- 1. Institutional Support

ICM Capability Maturity Model

		Level 1 Silo	Level 2 Centralized	Level 3 Partially Integrated	Level 4 Multi-modal Integrated	Level 5 Multi-modal Optimized
Institutional _ Integration	Inter-agency Cooperation	Agencies do not coordinate their operations	Some agencies share data but operate their networks independently	Agencies share data, and some cooperative responses are done	Agencies share data, and implement multi-modal incident response plans	Operations are centralized for the corridor, with personnel operation he corridor cooperatively
	Funding	Single Agency	MPO tracks funding	Coordinated funding through MPO	Cooperatively fund deployment project	Cooperatively fund deployment and operations and maintenance projects
Technical Integration	Traveler Information	Static information on corridor travel modes	Static trip planning with limited real-time alerts	Multi-modal trip planning and account- based alerts	Location-based, on- journey multi-modal information	Location-based, multi- modal tive routing
	Data Fusion	Limited or Manual	Near real-time data for multiple modes	Integrated multi-modal data (one-way)	Integrated multi-modal data (two-way)	Multi-source multi- modal data integrated and fused for operations
Operational Integration	Performance Measures	Some ad hoc performance measure based on historical data	Periodic performance measures based on historical data	High-level performance measures using real-time data	Detailed performance measure eal time for one cr more modes	Multi-modal performance measures in real time
	Decision Support System	Manual coordination of response	Pre-agreed incident response plans	Tool selection of pre-	Model-based selection of pre-agreed plans	Model-based creation of incident response plans

- 1. Assess where the project stands **now** along each dimension.
- 2. And where you want to be in X number of years.

Develop ICM System Concept – Operational Conditions

- Consider the roles and responsibilities of each stakeholder group for these (and other) scenarios:
 - » Daily operations
 - » Freeway incidents at different locations and of different durations/frequency/impact
 - » Arterial incidents at different locations and of different durations/frequency/impact
 - » Transit incident
 - » Special events Games at Inglewood Stadium, Concerts, Olympics
 - » Disaster response Evacuation

Prioritize Potential ICM/ATM Strategies Based on Stakeholder Input - Examples

- Express lanes
- Dynamic lane management
- Bus signal priority
- Hard shoulder running
- Queue warning system
- Dynamic routing
- Predictive traveler information
- Adaptive ramp metering
- Coordination of ramp meters and arterial signals
- Responsive traffic signal control on arterials

Map Expected Effectiveness of ICM/ATM Strategies against Operational Conditions (Example)

Scenario	Opera	nily tions – cident	Minor I	ncident	Ma	ajor Incid	ent
Demand	Med	High	Med	High	Low	Med	High
Traveler Information							
Comparative, multimodal travel time							
information (pre-trip and en-route)		•	•		•	•	•
Traffic Management							
Incident signal retiming plans for							
frontage roads			_		•	_	_
Incident signal retiming plans for							
arterials			•		•	•	•
Managed Lanes							
HOT lane (congesting pricing)	•	•					
Express toll lane (congestion pricing)	•	•					
Light-rail Transit Management							
Smart parking system						•	•
Red line capacity increase						•	•
Station parking expansion (private							
parking)						_	_
Station parking expansion (valet							
parking)					^	CVCTENAA	TICC

Conduct Transportation Analysis

- Improved understanding of system dynamics and problem diagnosis
- Invest in the right strategies
- Invest with confidence
- Lower risk associated with implementation
- Continually improve implementation
- Improved transportation decision making

Assess Performance Measures and Conduct Benefit Cost Analysis

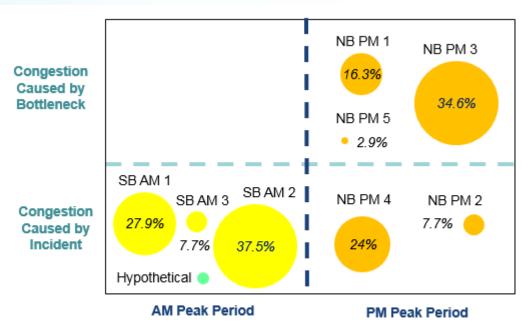
Performance Measure	Useful Metrics
Mobility	Travel time, delay, throughput.
Reliability and Variability of Travel Time	Changes in Planning Index, changes in the standard deviation of travel time.
Emissions and Fuel Consumption	Emissions and fuel consumption rates based on factors such as facility type, vehicle mix.
Safety	Accidents or crashes in the study area (fatalities, injuries, property-damage-only accidents).
Cost Estimation	Capital, operating, and maintenance costs.

Example Benefit Cost Results from Pioneer Sites ICM AMS

	San Diego	Dallas	Minneapolis
Annual Travel Time Savings (Person-Hours)	246,000	740,000	132,000
Improvement in Travel Time Reliability (Reduction in Travel Time Variance)	10.6%	3%	4.4%
Gallons of Fuel Saved Annually	323,000	981,000	17,600
Tons of Mobile Emissions Saved Annually	3,100	9,400	175
10-Year Net Benefit	\$104M	\$264M	\$82M
10-Year Cost	\$12M	\$14M	\$4M
Benefit-Cost Ratio	10:1	20:1	22:1

Prioritize across Strategies and Operational Conditions

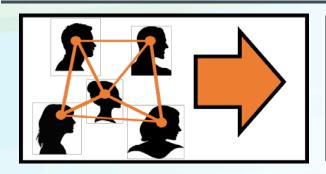
Highest Priority Scenarios with greatest frequency and impact


Lower Priority

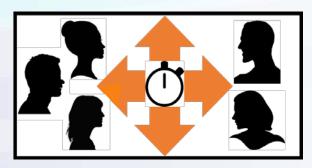
- Scenarios with low likelihood but major impact
- Scenarios with frequent occurrence but limited impact

Lowest Priority

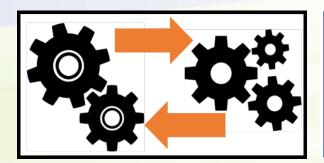
 Scenarios with low frequency and low impacts


Operational Condition Dartboard Scenario Frequency

Note: The size of each circle represents the percent of total analysis time period.



Initiate Formal Arrangements


Institutional

 Governing how ICM stakeholders determine and guide the strategic direction of the ICM deployment over time

Organizational

 Governing the roles, responsibilities, limitations, and tactical interactions among ICM system operators

Technical

• Governing the ownership and responsibility among stakeholders for the security, monitoring, maintenance, and enhancements