Transportation Safety: Integrating quantified safety evaluations in project planning

Jim Schoen

Matt Braughton

October 12, 2017

Presentation Outline

- Overview
- Quantitative Safety Analysis
- Performance-based Analysis

Overview—We hope to share how....

- Performance-based analysis is a means to support project planning and design decisions
- We can make more informed project decisions based on quantitative safety performance
- We are considering factors beyond capacity-based mobility to guide project decisions

Overview

The past....

- Focusing on maximizing motor vehicle capacity as the measure of project success.
- Using dimensional values as the primary determinant of design acceptability
- Considering design standards as a surrogate for safety

The present....

- Considering and integrating pedestrians and bicyclists in design configurations
- Using performance-based analyses to support project decision making
- Integrating quantitative safety performance in planning, design, and management

The future: Incrementally integrating technology into infrastructure and vehicles for maximum safety and mobility performance...

Safety is a continuum not an absolute

Design Dimensions

(Lane Width, Radius of Curve, Stopping Sight Distance, etc.)

Source: NCHRP Report 480

Presentation Outline

- Overview
- Quantitative Safety Analysis
- Performance-based Analysis

Quantitative Safety Analysis Benefits

- Measure safety performance objectively (i.e., quantitatively)
 - Differentiate "safety" from "security"
- New tools enhance our current practice
 - Improve reliability
 - Provide new capabilities (e.g., predicting crashes)
 - Quantify safety and compare with other project advantages and disadvantages
- Incorporate new tools and methods in the near-term and plan for further integrating them in the long-term
 - No need to do everything at once

Quantitative Safety Performance begins early, too!

- Safety integration throughout project development process
 - Quantify safety performance
 - Comprehensively address safety issues
 - Cost-effectively reduce crashes

Quantitative Safety Analysis

- Apply tools that quantify safety performance (frequency and severity)
- Conduct objective safety analyses
- Focus on mitigations that best address contributing factors
- Spend your money wisely...be prepared for non-engineering solutions

...We can not "design" our way to target safety performance...

Quantitative Safety Analysis Resources

- AASHTO's Highway Safety Manual, 1st Edition (2010)
 - 2nd Edition under development
- FHWA CMF Clearinghouse
 - Crash Modification Factors
 - Weighted and ranked
- Agency-specific SPFs
 - Safety Performance Functions
- Publically accessible spreadsheets

Quantitative Safety Analysis: Network Screening

- Understand available data
 - Crash characteristics
 - Roadway attributes
 - Activity (volume)
 - Context and land use
 - Constraints
- Determine best available safety performance measures
 - What is the focus of the study?
 - What are our analysis constraints?
 - How will the results be used?

Quantitative Safety Analysis: Network Screening

- Three ways of thinking about crashes:
 - Frequency, Severity, Type
- **Easy-to-implement** *Highway Safety Manual* **performance measures**:
 - Crash Rate
 - Equivalent Property Damage Only Score
 - Excess Proportion of Crash Types
- Improving statistical confidence
 - Better data
 - Better methods

Network Screening Spectrum

Success Story: Pasadena Safer Streets Projects

- Integrated HSM performance measures into their crash database and site selection process
- Developed long-term safety evaluation process
- Identified top projects and develop concept designs
- Successful HSIP Cycle 8 grant for 3 intersections
- Additional grants totaling \$1.5 million for the City

Presentation Outline

- Overview
- Quantitative Safety Analysis
- Performance-based Analysis

Performance-based Analyses

- Adapting to each project context
 - Identifying intended project outcomes
 - Establishing whom we are trying to serve
 - Selecting performance measures based on what we are trying to achieve
- Intersection control evaluations
 - Consider safety performance, multi-modal needs, service life, and other metrics beyond traffic operations
 - Alternative intersections and interchanges
- Quantified Safety Performance
 - Highway Safety Manual (AASHTO 2010)
- Multimodal Quality of Service

...Focusing on the "value" of our investments...

Applications of the Predictive Method

Safety Management

Network screening to identify high priority sites

Corridor and System Planning

- Assess and compare safety performance
- Identify hot spots
- Identify potential safety improvements and mitigation measures
- Prioritization criteria

Project Scoping and Pre-design

- Compare the safety performance of alternatives
- Evaluate effect of proposed improvements and crash countermeasures
- Assess the effect of design options (e.g. cross section, horizontal curvature, lighting, etc)
- Evaluate design exceptions

HSM Predictive Models

		Intersections							
Facility	Segment	3-leg Unsig	3-leg Sig	4-leg Unsig	4-leg Sig	5-leg Sig	All- way Stop	Round about	SPUI Sig
Rural 2-lane Highways	•	•	0	•	•	0	0	0	
Rural Multilane Highways									
4-lane undivided	•	•	0	•	•	0	0	0	
4-lane divided	•	•	0	•	•	0	0	0	
Urban & Suburban Arterials									
2-lane undivided	•	•	•	•	•	0	0	0	
3-lane (TWLTL)			•	•	•	0	0	0	
4-lane undivided	•	•	•		•	0	0	0	
4-lane divided	•		•		•	0		0	
5-lane (TWLTL)	•	•	•		•	0		0	
6-lane divided	0	0	0	0	0	0			
One-way	0	0	0	0	0	0	0		
Freeways & Interchanges									
Basic Segments	•								
Ramps	•								
Speed-change lanes	•								

- Current HSM
- Potential Addition to next HSM Edition

Integrating Safety with Pavement Preservation

Existing Conditions:

- **AADT:** 1,500 (2011); 1,700 (2030)
- 5-Year Crash Data
 - Fatal: 1 Injury: 5 PDO: 14
- Level Terrain
- 12-foot lanes
- 2 foot paved shoulders

Projects Under Consideration:

- 8-foot shoulders
- Reconstructing Flying-Y intersection,
- Adding Two Way Left Turn Lane

US 191:, MP 38.0 to MP 45.9

HSM Predictive Method Analysis Results

		xpected C Frequence rashes per	у	Estimated 20-year Total	Estimated 20-year Total Crash					
	FI	PDO Total		Crashes	Reduction					
Existing Roadway										
2010	1.6	3.2	4.8	104.0						
2030	1.9	3.9	5.8	106.0						
Remove Flying-Y in	Remove Flying-Y intersection at Pearce Rd									
2010	1.6	3.2	4.8	105.0	1.0					
2030	1.9	3.8	5.7	105.0	1.0					
Add TWLTL north	of SR 18	31								
2010	1.6	3.2	4.8	105.0	1.0					
2030	1.9	3.8	5.7	105.0	1.0					
Widen shoulders to 8 feet with rumble strips										
2010	1.3	2.6	3.9	95.0	21.0					
2030	1.4	3.2	4.6	85.0	21.0					

Expected Safety Benefit

	Fatal	Injury A	Injury B	Injury C	PDO	Total		
Crash Costs (ADOT)	\$5,800,000	\$400,000	\$80,000	\$42,000	\$4,000			
Project: Widen Shoulders to 8 feet with rumble strips								
Expected Crash Reduction (average over 20 Years)	0.9	0.9	0.9	3.5	12.4	18.6		
Benefit over service life (20 years)	\$ 5,137,143	\$354,286	\$ 70,857	\$148,800	\$ 49,600	\$5,760,686		

Intersection Control Evaluation

Project Performance Measures

Performance Measure	Traffic Signal	Roundabout	All-Way Stop Control	
Weekday Vehicle Delay				
(hours/year)	52,850	55,150	250,000	
Predicted Crash Frequency				
Fatal & Injury	23.2	10.5	10.5	
Total	68.5	50.7	50.7	

Calculate Net Present Value of Costs

	Net Present Value of Costs								
Cost Categories		Traffic Signal		oundabout	All-Way Stop Control				
Planning & Construction Costs	\$	956,142	\$	646,354	\$				
Annual Operations and Maintenance									
Costs	\$	138,349	\$	59,292	\$	44,469			
Auto Passenger Delay	\$	13,744,297	\$	14,342,231	\$	65,155,904			
Truck Delay	\$	556,454	\$	580,662	\$	2,637,912			
Safety	\$	25,265,135	\$	18,640,006	\$	18,640,006			
Greenhouse Gases									
Criteria Pollutants									
Total cost	\$40,660,377		\$3	34,268,545	\$86,478,291				

Benefit-Cost Analysis

	Net Present Value of Benefits Relative to Base Case								
Benefit Categories	Traffic Signal			oundabout	All-Way Stop Control				
Auto Passenger Delay	\$	51,411,607	\$	50,813,673					
Truck Delay	\$	2,081,458	\$	2,057,250					
Safety	\$	(6,625,129)	\$	_					
Greenhouse Gases									
Criteria Pollutants									
Net Present Value of Benefits	\$	46,867,936	\$	52,870,923					
Net Present Value of Costs	\$	1,050,022	\$	661,177					
Present Value of Net Benefits	\$	45,817,915	\$	52,209,746					
Benefit-Cost Ratio		44.64		79.96					

Thank You!

